A gradient in the density of intramembrane particles is formed during capping induced by concanavalin A.

نویسندگان

  • H Bennett
  • J Condeelis
چکیده

During capping of concanavalin A (ConA) by amoebae of Dictyostelium discoideum, each cell becomes polarized, with the ConA at one end and newly extended pseudopodia at the opposite end of the cell. This new polarity is stable until the cap is shed or internalized. Intramembrane particles (IMPs) are widely believed to represent large integral membrane proteins, many of which are ion pumps and channels. Since asymmetric ion currents have been implicated in the development of cell polarity, we have used morphological landmarks associated with the capped cells in freeze-fracture to make a morphometric analysis of the IMP distribution relative to the axis of polarization of the capped cell. Untreated cells in suspension extend pseudopodia randomly from their surfaces. In these cells the numerical density of IMPs is random. However, capped cells demonstrate a density gradient of IMPs with the lowest density usually in the pseudopodia and the highest in the cap. The difference in density between the cap and other regions of the cell is two- to threefold for all IMPs, but can be as much as sevenfold for greater than 12 nm IMPs. This study is the first to document that the numerical density of IMPs is altered in response to ligand-induced capping and demonstrates that the distribution of IMPs in a capped cell is related to the axis of polarization of the cell. These results suggest that the development of cell polarity during capping in Dictyostelium amoebae may be due to the asymmetric distribution of IMPs, which may cause asymmetric ion currents across the cell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective effect of interleukin-36 receptor antagonist on liver injury induced by concanavalin A in mice

Objective(s): Interleukin-36 receptor antagonist (IL-36Ra) is a new member of the IL-1 family that exhibits anti-inflammatory activity in a variety of inflammatory and immune diseases. Our purpose was to determine the effect of IL-36Ra on liver injury in a mouse hepatitis model induced by concanavalin A (ConA). Materials and Methods: Mic...

متن کامل

Microtubule and microfilament rearrangements during capping of concanavalin A receptors on cultured ovarian granulosa cells

Thin-section electron microscope analysis of rat and rabbit-cultured granulosa cells treated with concanavalin A (Con A) at 37 degrees C revealed coordinated changes in the cytoplasmic disposition of microfilaments, thick filaments, and microtubules during cap formation and internalization of lectin-receptor complexes. Con A-receptor clustering is accompanied by an accumulation of subplasmalemm...

متن کامل

Experimental Study of the Laser Induced Flow and Thermophoresis of Suspending Microparticles

The induced flow effect is the rotary motion generated in the fluid flow due to the temperature gradient. The phenomenon of thermophoresis is the movement of particles from the warmer side of the fluid to the cooler side. Laser is a very suitable device for creating a temperature gradient due to its unique features such as high power density, harmonic waves, single wavelength and very low diver...

متن کامل

Analogous ultrastructure and surface properties during capping and phagocytosis in leukocytes

Ultrastructural analyses have revealed striking similarities between Concanavalin A capping and phagocytosis in leukocytes. Both processes involve extensive membrane movement to form a protuberance or pseudopods; a dense network of microfilaments is recruited into both the protuberance and the pseudopods; microtubules are disassembled either generally (capping) or in the local region of the pse...

متن کامل

High-resolution surface views of human lymphocytes during capping of CD4 and HLA antigens as revealed by immunogold fracture-flip.

The surface ultrastructure of lymphocytes during capping of two transmembrane proteins is shown. As seen by fracture-flip the plasma membranes of human lymphocytes are covered by a high density of surface particles. Incubation in 30% glycerol leads to aggregation of these surface particles. Immunogold labelling shows that the transmembrane proteins bearing HLA class I and CD4 antigens are confi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 83  شماره 

صفحات  -

تاریخ انتشار 1986